The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Λc+ Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at √sNN =5.02 TeV at the LHC

Author

  • S Acharya
  • Jonatan Adolfsson
  • Sumit Basu
  • Peter Christiansen
  • Oliver Matonoha
  • Adrian Nassirpour
  • Alice Ohlson
  • Anders Oskarsson
  • Tuva Richert
  • Omar Vazquez Rueda
  • David Silvermyr
  • N Zurlo

Summary, in English

The prompt production of the charm baryon Λ+c and the Λ+c/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at √sNN=5.02 TeV. These new measurements show a clear decrease of the Λ+c/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<pT<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K0S. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e− and e−p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Publication/Series

Physical Review Letters

Volume

127

Issue

20

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1079-7114