The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions at the LHC

Author

  • J. Adam
  • D. Adamova
  • M.M Aggarwal
  • G Aglieri Rinella
  • M. Agnello
  • N Agrawal
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Carsten Sogaard
  • Evert Stenlund
  • Vytautas Vislavicius

Summary, in English

We report on two-particle charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions as a function of the pseudorapidity and azimuthal angle difference, Δη and Δϕ respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum (pT) in pp, p–Pb, and Pb–Pb collisions at √sNN = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < pT < 2.0 GeV/c, the balance function becomes narrower in both Δη and Δϕ directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low pT is a feature of bulk particle production. © CERN for the benefit of the ALICE collaboration 2016.

Department/s

  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

European Physical Journal C

Volume

76

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044