The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Centrality dependence of pion freeze-out radii in Pb-Pb collisions at sNN =2.76 TeV

Author

  • Adam J.
  • P. Christiansen
  • H. Ljunggren
  • A. Oskarsson
  • T. Richert
  • D. Silvermyr
  • C. Søgaard
  • E. Stenlund
  • V. Vislavicius
  • Zyzak M.

Summary, in English

We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at sNN=2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with (dNch/dη)1/3. This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller sNN, a decrease in the ratio Rout/Rside is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider. © 2016 CERN.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Publication/Series

Physical Review C

Volume

93

Issue

2

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9985