The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Measurement of K⁎(892)± production in inelastic pp collisions at the LHC

Author

  • S. Acharya
  • J. Adolfsson
  • S. Basu
  • P. Christiansen
  • O. Matonoha
  • A.F. Nassirpour
  • A. Ohlson
  • A. Oskarsson
  • T. Richert
  • O.V. Rueda
  • D. Silvermyr
  • N. Zurlo

Summary, in English

The first results on K⁎(892)± resonance production in inelastic pp collisions at LHC energies of s=5.02, 8, and 13 TeV are presented. The K⁎(892)± has been reconstructed via its hadronic decay channel K⁎(892)→±KS0+π± with the ALICE detector. Measurements of transverse momentum distributions, pT-integrated yields, and mean transverse momenta for charged K⁎(892) are found to be consistent with previous ALICE measurements for neutral K⁎(892) within uncertainties. For pT>1 GeV/c the K⁎(892)± transverse momentum spectra become harder with increasing centre-of-mass energy from 5.02 to 13 TeV, similar to what previously observed for charged kaons and pions. For pT<1 GeV/c the K⁎(892)± yield does not evolve significantly and the abundance of K⁎(892)± relative to K is rather independent of the collision energy. The transverse momentum spectra, measured for K⁎(892)± at midrapidity in the interval 0 < pT<15 GeV/c, are not well described by predictions of different versions of PYTHIA 6, PYTHIA 8 and EPOS-LHC event generators. These generators reproduce the measured pT-integrated K⁎±/K ratios and describe well the momentum dependence for pT<2 GeV/c. © 2022 European Organization for Nuclear Research

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2022

Language

English

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

828

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693