The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Centrality dependence of ψ(2S) suppression in p-Pb collisions at √sNN= 5.02 TeV

Author

  • J. Adam
  • D. Adamova
  • M.M Aggarwal
  • G Aglieri Rinella
  • M. Agnello
  • N Agrawal
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Evert Stenlund
  • Vytautas Vislavicius

Summary, in English

The inclusive production of the ψ(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy √sNN = 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges −4.46 < ycms< −2.96 and 2.03 < ycms< 3.53, down to zero transverse momentum, by reconstructing the ψ(2S) decay to a muon pair. The ψ(2S) production cross section σψ(2S) is presented as a function of the collision centrality, which is estimated through the energy deposited in forward rapidity calorimeters. The relative strength of nuclear effects on the ψ(2S) and on the corresponding 1S charmonium state J/ψ is then studied by means of the double ratio of cross sections [σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp between p-Pb and pp collisions, and by the values of the nuclear modification factors for the two charmonium states. The results show a large suppression of ψ(2S) production relative to the J/ψ at backward (negative) rapidity, corresponding to the flight direction of the Pb-nucleus, while at forward (positive) rapidity the suppressions of the two states are comparable. Finally, comparisons to results from lower energy experiments and to available theoretical models are presented. © 2016, The Author(s).

Department/s

  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2016

Issue

6

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Heavy Ion Experiments
  • Quark Gluon Plasma

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479