The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=5.02 TeV

Author

  • J. Adam
  • D. Adamova
  • M.M Aggarwal
  • G Aglieri Rinella
  • M. Agnello
  • N Agrawal
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Evert Stenlund
  • Vytautas Vislavicius

Summary, in English

We present the charged-particle pseudorapidity density in Pb–Pb collisions at sNN=5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from −3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0–5%) collisions we find 21400±1300, while for the most peripheral (80–90%) we find 230±38. This corresponds to an increase of (27±4)% over the results at sNN=2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations — none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies. © 2017 The Author(s)

Department/s

  • Particle and nuclear physics

Publishing year

2017

Language

English

Pages

567-577

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

772

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693