The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Pseudorapidity dependence of the anisotropic flow of charged particles in Pb–Pb collisions at sNN=2.76 TeV

Author

  • J. Adam
  • D. Adamova
  • M.M Aggarwal
  • G Aglieri Rinella
  • M. Agnello
  • N Agrawal
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Evert Stenlund
  • Vytautas Vislavicius

Summary, in English

We present measurements of the elliptic (v2), triangular (v3) and quadrangular (v4) anisotropic azimuthal flow over a wide range of pseudorapidities (−3.5<η<5). The measurements are performed with Pb–Pb collisions at sNN=2.76 TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of vn(η) is largely independent of centrality for the flow harmonics n=2–4, however the higher harmonics fall off more steeply with increasing |η|. We assess the validity of extended longitudinal scaling of v2 by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data. © 2016 The Author

Department/s

  • Particle and nuclear physics

Publishing year

2016

Language

English

Pages

376-388

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

762

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693