The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at √sNN = 2.76 TeV

Author

  • J. Adam
  • D. Adamova
  • M.M Aggarwal
  • G Aglieri Rinella
  • M. Agnello
  • N Agrawal
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Carsten Sogaard
  • Evert Stenlund
  • Vytautas Vislavicius

Summary, in English

The production of J/ψ and ψ(2S) was studied with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity (2.5 < y < 4) down to zero transverse momentum (pt) in the dimuon decay channel. Inclusive J/ψ yields were extracted in different centrality classes and the centrality dependence of the average pt is presented. The J/ψ suppression, quantified with the nuclear modification factor (RAA), was measured as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/ψ production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the ψ(2S) suppression are provided via the ratio of ψ(2S) over J/ψ measured in pp and Pb-Pb collisions. © 2016, The Author(s).

Department/s

  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2016

Issue

5

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Heavy Ion Experiments
  • Quark gluon plasma

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479