The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au + Au collisions at sNN =200 GeV

Author

  • A Adare
  • S. Afanasiev
  • C. Aidala
  • N. N. Ajitanand
  • Y. Akiba
  • H Al-Bataineh
  • Peter Christiansen
  • Hans-Åke Gustafsson
  • Eva Haslum
  • Anders Oskarsson
  • Sarah Rosendahl
  • Evert Stenlund

Summary, in English

Measurements of the anisotropic flow coefficients v2{Ψ2},v3{Ψ3},v4{Ψ4}, and v4{Ψ2} for identified particles (π±,K±, and p+p) at midrapidity, obtained relative to the event planes Ψm at forward rapidities in Au + Au collisions at sNN=200GeV, are presented as a function of collision centrality and particle transverse momenta pT. The vn coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic n, a modified valence quark-number Nq scaling [plotting vn{Ψm}/(Nq)n/2 versus transverse kinetic energies (KET)/Nq] is observed to yield a single curve for all the measured particle species for a broad range of KET. A simultaneous blast-wave model fit to the observed vn{Ψm}(pT) coefficients and published particle spectra identifies radial flow anisotropies ρn{Ψm} and spatial eccentricities sn{Ψm} at freeze-out. These are generally smaller than the initial-state participant-plane geometric eccentricities n{ΨmPP} as also observed in the final eccentricity from quantum interferometry measurements with respect to the event plane. © 2016 American Physical Society.

Department/s

  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

Physical Review C: covering nuclear physics

Volume

93

Issue

5

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9985