The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Production of light-flavor hadrons in pp collisions at √s=7and√s=13TeV

Author

  • S Acharya
  • Jonatan Adolfsson
  • Peter Christiansen
  • Adrian Nassirpour
  • Alice Ohlson
  • Anders Oskarsson
  • Tuva Richert
  • Omar Vazquez Rueda
  • David Silvermyr
  • Evert Stenlund
  • N Zurlo

Summary, in English

The production of π±, K ±, KS0, K ∗(892) , p , ϕ(1020) , Λ , Ξ -, Ω -, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s = 13 TeV at midrapidity (| y| < 0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of KS0, Λ , and Λ ¯ in inelastic pp collisions at s=7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≤ pT≤ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT≡2pT/s scaling properties of hadron production are also studied. As the collision energy increases from s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K ± and p (p ¯) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p ¯) at high pT. © 2021, CERN for the benefit of the ALICE collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Publication/Series

European Physical Journal C

Volume

81

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044