The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Peter Christiansen Profile

Peter Christiansen

Professor

Peter Christiansen Profile

Measurement of D-meson production versus multiplicity in p-Pb collisions at √sNN=5.02 TeV

Author

  • J. Adam
  • D. Adamova
  • M.M Aggarwal
  • G Aglieri Rinella
  • M. Agnello
  • N Agrawal
  • Peter Christiansen
  • Martin Ljunggren
  • Anders Oskarsson
  • Tuva Richert
  • David Silvermyr
  • Carsten Sogaard
  • Evert Stenlund
  • Vytautas Vislavicius

Summary, in English

The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at sNN=5.02 TeV with the ALICE detector at the LHC is reported. D0, D+ and D∗+ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range −0.96 < ycms< 0.04 and transverse momentum interval 1<pT<24 GeV/c. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D0, D+ and D∗+ are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured pT regions and event classes. The relative D-meson yields, calculated in various pT intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at s=7 TeV as well as with EPOS 3 calculations.[Figure not available: see fulltext.] © 2016, The Author(s).

Department/s

  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2016

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Heavy Ion Experiments
  • Heavy-ion collision
  • Quark gluon plasma

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479