The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Hannah Herde

Interests: Higgs physics • dark matter searches • solid state tracking detectors • track reconstruction • active teaching methods • digital art • improv

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Search for a new Z′ gauge boson in 4μ events with the ATLAS experiment

Author

  • G. Aad
  • T.P.A. Åkesson
  • E.E. Corrigan
  • C. Doglioni
  • P.A. Ekman
  • J. Geisen
  • V. Hedberg
  • H. Herde
  • G. Jarlskog
  • B. Konya
  • E. Lytken
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at s = 13 TeV, corresponding to an integrated luminosity of 139 fb −1. The new gauge boson Z′ is predicted by Lμ − Lτ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded. [Figure not available: see fulltext.]. © 2023, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2023

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2023

Issue

7

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Beyond Standard Model
  • Hadron-Hadron Scattering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479