The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Hannah Herde

Interests: Higgs physics • dark matter searches • solid state tracking detectors • track reconstruction • active teaching methods • digital art • improv

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Photon-rejection power of the Light Dark Matter eXperiment in an 8 GeV beam

Author

  • Torsten Åkesson
  • Cameron Bravo
  • Liam Brennan
  • Lene Kristian Bryngemark
  • Pierfrancesco Butti
  • E. Craig Dukes
  • Valentina Dutta
  • Bertrand Echenard
  • Thomas Eichlersmith
  • Jonathan Eisch
  • Einar Elén
  • Ralf Ehrlich
  • Cooper Froemming
  • Andrew Furmanski
  • Niramay Gogate
  • Chiara Grieco
  • Craig Group
  • Hannah Herde
  • Christian Herwig
  • David G. Hitlin
  • Tyler Horoho
  • Joseph Incandela
  • Wesley Ketchum
  • Gordan Krnjaic
  • Amina Li
  • Jeremiah Mans
  • Phillip Masterson
  • Sophie Middleton
  • Omar Moreno
  • Geoffrey Mullier
  • Joseph Muse
  • Timothy Nelson
  • Rory O’Dwyer
  • Leo Östman
  • James Oyang
  • Jessica Pascadlo
  • Ruth Pöttgen
  • Luis G. Sarmiento
  • Philip Schuster
  • Matthew Solt
  • Cristina Mantilla Suarez
  • Lauren Tompkins
  • Natalia Toro
  • Nhan Tran
  • Erik Wallin
  • Andrew Whitbeck
  • Danyi Zhang

Summary, in English

The Light Dark Matter eXperiment (LDMX) is an electron-beam fixed-target experiment designed to achieve comprehensive model independent sensitivity to dark matter particles in the sub-GeV mass region. An upgrade to the LCLS-II accelerator will increase the beam energy available to LDMX from 4 to 8 GeV. Using detailed GEANT4-based simulations, we investigate the effect of the increased beam energy on the capabilities to separate signal and background, and demonstrate that the veto methodology developed for 4 GeV successfully rejects photon-induced backgrounds for at least 2 × 1014 electrons on target at 8 GeV. [Figure not available: see fulltext.]

Department/s

  • Particle and nuclear physics
  • Department of Physics
  • Nuclear physics

Publishing year

2023-12

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2023

Issue

12

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Beyond Standard Model
  • Dark Matter
  • Fixed Target Experiments

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479