The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Hannah Herde

Interests: Higgs physics • dark matter searches • solid state tracking detectors • track reconstruction • active teaching methods • digital art • improv

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Evidence for the charge asymmetry in (Formula presented.) production at √s = 13 TeV with the ATLAS detector

Author

  • G. Aad
  • T.P.A. Åkesson
  • E.E. Corrigan
  • C. Doglioni
  • P.A. Ekman
  • J. Geisen
  • V. Hedberg
  • H. Herde
  • G. Jarlskog
  • B. Konya
  • E. Lytken
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

Inclusive and differential measurements of the top–antitop (Formula presented.) charge asymmetry (Formula presented.) and the leptonic asymmetry (Formula presented.) are presented in proton–proton collisions at s = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive (Formula presented.) charge asymmetry is measured to be (Formula presented.), which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the (Formula presented.) system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients. [Figure not available: see fulltext.]. © 2023, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2023

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2023

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Hadron-Hadron Scattering
  • Top Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479