The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Hannah Herde

Interests: Higgs physics • dark matter searches • solid state tracking detectors • track reconstruction • active teaching methods • digital art • improv

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Search for the decay of the Higgs boson to a Z boson and a light pseudoscalar particle decaying to two photons

Author

  • G. Aad
  • T.P.A. Åkesson
  • C. Doglioni
  • P.A. Ekman
  • V. Hedberg
  • H. Herde
  • B. Konya
  • E. Lytken
  • R. Poettgen
  • N.D. Simpson
  • O. Smirnova
  • L. Zwalinski

Summary, in English

A search for the decay of the Higgs boson to a Z boson and a light, pseudoscalar particle, a, decaying respectively to two leptons and to two photons is reported. The search uses the full LHC Run 2 proton–proton collision data at s=13 TeV, corresponding to 139 fb−1 collected by the ATLAS detector. This is one of the first searches for this specific decay mode of the Higgs boson, and it probes unexplored parameter space in models with axion-like particles (ALPs) and extended scalar sectors. The mass of the a particle is assumed to be in the range 0.1–33 GeV. The data are analysed in two categories: a merged category where the photons from the a decay are reconstructed in the ATLAS calorimeter as a single cluster, and a resolved category in which two separate photons are detected. The main background processes are from Standard Model Z boson production in association with photons or jets. The data are in agreement with the background predictions, and upper limits on the branching ratio of the Higgs boson decay to Za times the branching ratio a→γγ are derived at the 95% confidence level and they range from 0.08% to 2% depending on the mass of the a particle. The results are also interpreted in the context of ALP models. © 2024 The Author(s)

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration
  • Department of Physics

Publishing year

2024

Language

English

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

850

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693