The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Hannah Herde

Interests: Higgs physics • dark matter searches • solid state tracking detectors • track reconstruction • active teaching methods • digital art • improv

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Test of CP Invariance in Higgs Boson Vector-Boson-Fusion Production Using the H→γγ Channel with the ATLAS Detector

Author

  • G. Aad
  • T.P.A. Åkesson
  • E.E. Corrigan
  • C. Doglioni
  • P.A. Ekman
  • J. Geisen
  • V. Hedberg
  • H. Herde
  • G. Jarlskog
  • B. Konya
  • E. Lytken
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

A test of CP invariance in Higgs boson production via vector-boson fusion has been performed in the H→γγ channel using 139 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV collected by the ATLAS detector at the LHC. The optimal observable method is used to probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons, as described by an effective field theory. No sign of CP violation is observed in the data. Constraints are set on the parameters describing the strength of the CP-odd component in the coupling between the Higgs boson and the electroweak gauge bosons in two effective field theory bases: d[over ˜] in the HISZ basis and c_{HW[over ˜]} in the Warsaw basis. The results presented are the most stringent constraints on CP violation in the coupling between Higgs and weak bosons. The 95% C.L. constraint on d[over ˜] is derived for the first time and the 95% C.L. constraint on c_{HW[over ˜]} has been improved by a factor of 5 compared to the previous measurement.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2023

Language

English

Publication/Series

Physical Review Letters

Volume

131

Issue

6

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1079-7114