The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Hannah Herde

Interests: Higgs physics • dark matter searches • solid state tracking detectors • track reconstruction • active teaching methods • digital art • improv

Image of Hannah Herde in front of Fysicum captured by Johan Joelsson

Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z+jets events using 139 fb - 1 of ATLAS proton–proton collision data at √s=13 TeV

Author

  • G. Aad
  • T.P.A. Åkesson
  • E.E. Corrigan
  • C. Doglioni
  • P.A. Ekman
  • J. Geisen
  • V. Hedberg
  • H. Herde
  • G. Jarlskog
  • B. Konya
  • E. Lytken
  • J.U. Mjörnmark
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

The identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton–proton collision events at s=13 TeV corresponding to an integrated luminosity of 139 fb - 1 . The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties. © 2023, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2023

Language

English

Publication/Series

European Physical Journal C

Volume

83

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044