The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Torsten ÅKESSON

Torsten Åkesson

Professor

Torsten ÅKESSON

Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions

Author

  • G. Aad
  • T.P.A. Åkesson
  • K.S.V. Astrand
  • C. Doglioni
  • P.A. Ekman
  • V. Hedberg
  • H. Herde
  • B. Konya
  • E. Lytken
  • R. Poettgen
  • N.D. Simpson
  • O. Smirnova
  • E.J. Wallin
  • L. Zwalinski

Summary, in English

Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at s = 13 TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of 140 fb−1 and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the Z → νν process is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration
  • Department of Physics

Publishing year

2024

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2024

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Hadron-Hadron Scattering
  • Jets
  • Vector Boson Production

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479