The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Torsten ÅKESSON

Torsten Åkesson

Professor

Torsten ÅKESSON

Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

Author

  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • R Aben
  • Torsten Åkesson
  • Simona Bocchetta
  • LENE BRYNGEMARK
  • Caterina Doglioni
  • Anders Floderus
  • Anthony Hawkins
  • Vincent Hedberg
  • Jenny Ivarsson
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS. © 2017, CERN for the benefit of the ATLAS collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2017

Language

English

Publication/Series

European Physical Journal C

Volume

77

Issue

7

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044