The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of RP

Ruth Pöttgen

Senior Lecturer

Portrait of RP

Search for dark matter produced in association with bottom or top quarks in √s=13 TeV pp collisions with the ATLAS detector

Author

  • M Aaboud
  • G Aad
  • B. Abbott
  • O Abdinov
  • B Abeloos
  • S. H. Abidi
  • Torsten Åkesson
  • Simona Bocchetta
  • Caterina Doglioni
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Ulf Mjörnmark
  • Ruth Pöttgen
  • Trine Poulsen
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

A search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1fb-1 of proton–proton collision data recorded by the ATLAS experiment at s=13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50GeV and assuming a dark-matter mass of 1GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35GeV, mediator particles with mass below 1.1TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements. © 2018, CERN for the benefit of the ATLAS collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2018

Language

English

Publication/Series

European Physical Journal C

Volume

78

Issue

1

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044