The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Charged-hadron production in pp, p+Pb, Pb+Pb, and Xe+Xe collisions at √sNN = 5 TeV with the ATLAS detector at the LHC


  • G. Aad
  • T.P.A. Åkesson
  • C. Doglioni
  • P.A. Ekman
  • V. Hedberg
  • H. Herde
  • B. Konya
  • E. Lytken
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

This paper presents measurements of charged-hadron spectra obtained in pp, p+Pb, and Pb+Pb collisions at s or sNN = 5.02 TeV, and in Xe+Xe collisions at sNN = 5.44 TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb −1, 28 nb −1, 0.50 nb −1, and 3 μb −1, respectively. The nuclear modification factors RpPb and R AA are obtained by comparing the spectra in heavy-ion and pp collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor RpPb shows a moderate enhancement above unity with a maximum at p T ≈ 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct p T-dependence with a local maximum at p T ≈ 2 GeV and a local minimum at p T ≈ 7 GeV. This dependence is more distinguishable in more central collisions. No significant |η|-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe R AA better in central collisions and in the p T range from about 10 to 100 GeV. [Figure not available: see fulltext.] © 2023, The Author(s).


  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year





Journal of High Energy Physics





Document type

Journal article




  • Subatomic Physics


  • Heavy Ion Experiments




  • ISSN: 1029-8479