The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Search for the electroweak production of supersymmetric particles in √s = 8 TeV pp collisions with the ATLAS detector

Author

  • G Aad
  • B. Abbott
  • J. Abdallah
  • O Abdinov
  • R Aben
  • M Abolins
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Caterina Doglioni
  • Anders Floderus
  • Anthony Hawkins
  • Vincent Hedberg
  • Jenny Ivarsson
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb-1 of proton-proton collision data at √s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models. © 2016 CERN, for the ATLAS Collaboration. Published by the American Physical Society under the terms of the "http://creativecommons.org/licenses/by/3.0/" Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Publication/Series

Physical Review D

Volume

93

Issue

5

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1550-2368