The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oxana Smirnova

Oxana Smirnova

Senior Lecturer, Deputy Head of division

Oxana Smirnova

Search for a new scalar resonance in flavour-changing neutral-current top-quark decays t → qX (q = u, c), with X → bb¯ , in proton-proton collisions at √s = 13 TeV with the ATLAS detector


  • G. Aad
  • T.P.A. Åkesson
  • E.E. Corrigan
  • C. Doglioni
  • P.A. Ekman
  • J. Geisen
  • V. Hedberg
  • G. Jarlskog
  • B. Konya
  • E. Lytken
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle X decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to qX, with X → bb¯ , and the other top quark decays according to the Standard Model, with the W boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from b-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb −1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction B (t → uX) and between 0.018% and 0.078% for the branching fraction B (t → cX), for masses of the scalar particle X between 20 and 160 GeV. [Figure not available: see fulltext.] © 2023, The Author(s).


  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year





Journal of High Energy Physics





Document type

Journal article




  • Subatomic Physics


  • Hadron-Hadron Scattering




  • ISSN: 1029-8479