The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Mikael Elfman

Researcher

Default user image.

Hydrogen analysis and profiling with a position sensitive detector

Author

  • Maciek Borysiuk
  • Linus Ros
  • Per Kristiansson
  • H. Skogby
  • N. Abdel
  • Mikael Elfman
  • Pavel Golubev
  • Charlotta Nilsson
  • Jan Pallon

Summary, in English

The double sided silicon strip detector (DSSSD) is a segmented silicon detector commonly used in the fields of high energy physics and nuclear physics. This type of detector is used for analysis of reactions produced by charged particles. This makes it well suited for a number of analytical methods commonly used in ion beam analysis (IBA), such as Rutherford Backscattering (RBS) and elastic recoil detection (ERDA). One such detector was installed and tested at Lund Ion Beam Analysis Facility (LIBAF) recently. This is a modification to the existing setup used to measure hydrogen concentrations and depth profiles. When completed it will be used primarily for geological applications. Exact knowledge of the hydrogen content is important in a number of fields, but high enough accuracy can be difficult to achieve with most methods. In IBA normally some variant of ERDA, such as the proton-proton (p-p) coincidence method is used. We describe how the p-p coincidence technique was optimized to get the most out of our experimental setup. Previously this type of spectroscopy has been performed with two detector channels. In the present setup we expand that number from 2 to 96 channels, 64 on the front and 32 on the back of the detector. The intersecting strips give 2048 distinct detector elements or 1024 possible coincidences as dictated by the reaction kinematics. This increase in complexity requires a more detailed data analysis but it rewards us with higher sensitivity and a better background suppression. (C) 2013 Elsevier B.V. All rights reserved.

Department/s

  • Nuclear physics
  • Department of Physics

Publishing year

2013

Language

English

Pages

49-53

Publication/Series

Nuclear Instruments & Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms

Volume

306

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Keywords

  • Position sensitive detectors
  • Proton-proton scattering
  • Hydrogen
  • analysis
  • Hydrogen depth profiling

Status

Published

ISBN/ISSN/Other

  • ISSN: 0168-583X