The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Lene Kristian Bryngemark

Researcher

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Measurement of the bb¯ dijet cross section in pp collisions at √s=7 TeV with the ATLAS detector

Author

  • M Aaboud
  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • B Abeloos
  • Torsten Åkesson
  • Simona Bocchetta
  • LENE BRYNGEMARK
  • Caterina Doglioni
  • Anders Floderus
  • Vincent Hedberg
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

The dijet production cross section for jets containing a b-hadron (b-jets) has been measured in proton–proton collisions with a centre-of-mass energy of s=7 TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2fb-1. The cross section is measured for events with two identified b-jets with a transverse momentum pT> 20 GeV and a minimum separation in the η–ϕ plane of Δ R= 0.4. At least one of the jets in the event is required to have pT> 270 GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the b-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization. © 2016, CERN for the benefit of the ATLAS collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Publication/Series

European Physical Journal C

Volume

76

Issue

12

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044