The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Lene Kristian Bryngemark

Researcher

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Dijet production in √s=7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

Author

  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • R Aben
  • M Abolins
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Caterina Doglioni
  • Anders Floderus
  • Anthony Hawkins
  • Vincent Hedberg
  • Jenny Ivarsson
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

A 6.8 nb−1 sample of pp collision data collected under low-luminosity conditions at s=7TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT>20GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, ξ˜ of the fractional momentum loss of the proton assuming single diffractive dissociation (pp→pX). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ΔηF and small ξ˜ with a diffractive contribution which is significant at the highest ΔηF and the lowest ξ˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions. © 2016 CERN for the benefit of the ATLAS Collaboration

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Pages

214-234

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

754

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693