The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Lene Kristian Bryngemark

Researcher

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H → γγ decay channel at √s=8 TeV with the ATLAS detector

Author

  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • R Aben
  • M Abolins
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Caterina Doglioni
  • Anders Floderus
  • Anthony Hawkins
  • Vincent Hedberg
  • Jenny Ivarsson
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb−1 at s=8 TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions. © 2015 CERN for the benefit of the ATLAS Collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Pages

69-85

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

753

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693