The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Lene Kristian Bryngemark

Researcher

View of and from Lene Kristian's office window. The office mascot, a small pet pug, is sitting on top of a stack of books on the windowsill. Outside, there is a parking lot, trees and sky in the early dusk of a winter's day.

Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS

Author

  • M Aaboud
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Eric Corrigan
  • Caterina Doglioni
  • Kristian Gregersen
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Oxana Smirnova
  • L. Zwalinski

Summary, in English

The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb−1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon–nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02), (−1.84,0.91), and (1.09,1.90). The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei. © 2019 The Author

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2019

Language

English

Pages

230-252

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

796

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693