The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Kaare Endrup Iversen

Kaare Iversen

Doctoral student

Kaare Endrup Iversen

Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

Author

  • S. Acharya
  • S. Basu
  • P. Christiansen
  • J. Hansen
  • K.E. Iversen
  • O. Matonoha
  • A.F. Nassirpour
  • A. Ohlson
  • D. Silvermyr
  • J. Staa
  • V. Vislavicius
  • N. Zurlo

Summary, in English

Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p T) of 0.2 GeV/c and up to p T = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p T range 0.5 < p T < 26 GeV/c at sNN = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p T dependence is observed in pp collisions, where the yield of high-p T electrons increases faster as a function of multiplicity than the one of low-p T electrons. The measurement in p-Pb collisions shows no p T dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations. [Figure not available: see fulltext.] © 2023, The Author(s).

Department/s

  • Particle and nuclear physics

Publishing year

2023

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2023

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Hadron-Hadron Scattering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479