The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Jonatan Adolfsson

Jonatan Adolfsson

Affiliated

Jonatan Adolfsson

Inclusive, prompt and non-prompt J/ψ production at midrapidity in p-Pb collisions at √sNN = 5.02 TeV

Author

  • S. Acharya
  • J. Adolfsson
  • S. Basu
  • P. Christiansen
  • O. Matonoha
  • A.F. Nassirpour
  • A. Ohlson
  • A. Oskarsson
  • T. Richert
  • O.V. Rueda
  • D. Silvermyr
  • N. Zurlo

Summary, in English

A measurement of inclusive, prompt, and non-prompt J/ψ production in p-Pb collisions at a nucleon-nucleon centre-of-mass energy sNN = 5.02 TeV is presented. The inclusive J/ψ mesons are reconstructed in the dielectron decay channel at midrapidity down to a transverse momentum pT = 0. The inclusive J/ψ nuclear modification factor RpPb is calculated by comparing the new results in p-Pb collisions to a recently measured proton-proton reference at the same centre-of-mass energy. Non-prompt J/ψ mesons, which originate from the decay of beauty hadrons, are separated from promptly produced J/ψ on a statistical basis for pT larger than 1.0 GeV/c. These results are based on the data sample collected by the ALICE detector during the 2016 LHC p-Pb run, corresponding to an integrated luminosity Lint = 292 ± 11 μb−1, which is six times larger than the previous publications. The total uncertainty on the pT-integrated inclusive J/ψ and non-prompt J/ψ cross section are reduced by a factor 1.7 and 2.2, respectively. The measured cross sections and RpPb are compared with theoretical models that include various combinations of cold nuclear matter effects. From the non-prompt J/ψ production cross section, the b b ¯ production cross section at midrapidity, d σbb ¯/dy, and the total cross section extrapolated over full phase space, σbb ¯, are derived. [Figure not available: see fulltext.] © 2022, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2022

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2022

Issue

6

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Heavy Ion Experiments

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479