The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Johan Rathsman by the sea

Johan Rathsman

Senior lecturer

Johan Rathsman by the sea

A Monte Carlo model for 'jet quenching'

Author

  • Korinna Zapp
  • Gunnar Ingelman
  • Johan Rathsman
  • Johanna Stachel
  • Urs Achim Wiedemann

Summary, in English

We have developed the Monte Carlo simulation program Jewel 1.0 (Jet Evolution With Energy Loss), which interfaces a perturbative final-state parton shower with medium effects occurring in ultra-relativistic heavy-ion collisions. This is done by comparing for each jet fragment the probability of further perturbative splitting with the density-dependent probability of scattering with the medium. A simple hadronisation mechanism is included. In the absence of medium effects, we validate Jewel against a set of benchmark jet measurements. For elastic interactions with the medium, we characterise not only the medium-induced modification of the jet, but also the jet-induced modification of the medium. Our main physical result is the observation that collisional and radiative medium modifications lead to characteristic differences in the jet fragmentation pattern, which persist above a soft background cut. We argue that this should allow one to disentangle collisional and radiative parton energy loss mechanisms by measuring the n-jet fraction or a class of jet shape observables.

Publishing year

2009-04-01

Language

English

Pages

617-632

Publication/Series

European Physical Journal C

Volume

60

Issue

4

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044