The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Joakim

Joakim Cederkäll

Professor

Joakim

Performance analysis for the CALIFA Barrel calorimeter of the (RB)-B-3 experiment

Author

  • H. Alvarez-Pol
  • N. Ashwood
  • T. Aumann
  • D. Bertini
  • P. Cabanelas
  • E. Casarejos
  • Joakim Cederkäll
  • D. Cortina-Gil
  • P. Diaz Fernandez
  • I. Duran
  • E. Fiori
  • D. Galaviz
  • M. Labiche
  • E. Nacher
  • B. Pietras
  • D. Savran
  • O. Tengblad
  • P. Teubig

Summary, in English

The CALIFA calorimeter is an advanced detector for gamma rays and light charged particles, accordingly optimized for the demanding requirements of the physics programme proposed for the (RB)-B-3 facility at FAIR. The multipurpose character of CALIFA is required to fulfil challenging demands in energy resolution (5-6% at 1 MeV for gamma rays) and efficiency. Charged particles, e.g. protons of energies up to 320 MeV in the Barrel section, should also be identified with an energy resolution better to 1%. CALIFA is divided into two well-separated sections: a "Forward EndCap" and a cylindrical "Barrel" covering an angular range from 43.2 degrees to 140.3 degrees. The Barrel section, based on long CsI(Tl) pyramidal frustum crystals coupled to large area avalanche photodiodes (LAAPDs), attains the requested high efficiency for calorimetric purposes. The construction of the CALIFA Demonstrator, comprising 20% of the total detector, has already been initiated, and commissioning experiments are expected for 2014. The assessment of the capabilities and expected performance of the detector elements is a crucial step in their design, along with the prototypes evaluation. For this purpose, the Barrel geometry has been carefully implemented in the simulation package R3BRoot, including easily variable thicknesses of crystal wrapping and carbon fibre supports. A complete characterization of the calorimeter response (including efficiency, resolution, evaluation of energy and reconstruction losses) under different working conditions, with several physics cases selected to probe the detector performance over a wide range of applications, has been undertaken. Prototypes of different sections of the CALIFA Barrel have been modeled and their responses have been evaluated and compared with the experimental results. The present paper summarizes the outcome of the simulation campaign for the entire Barrel section and for the corresponding prototypes tested at different European installations. (C) 2014 Elsevier B.V. All rights reserved

Department/s

  • Nuclear physics

Publishing year

2014

Language

English

Pages

453-466

Publication/Series

Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment

Volume

767

Document type

Journal article

Publisher

Elsevier

Topic

  • Accelerator Physics and Instrumentation

Keywords

  • Calorimetry
  • Simulation
  • Gamma detection
  • Proton detection
  • Exotic
  • beams
  • Fast beams

Status

Published

ISBN/ISSN/Other

  • ISSN: 0167-5087