The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Göran Jarlskog

Göran Jarlskog

Professor emeritus

Göran Jarlskog

In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

Author

  • M Aaboud
  • Torsten Åkesson
  • Simona Bocchetta
  • Eric Corrigan
  • Caterina Doglioni
  • Kristian Gregersen
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Ulf Mjörnmark
  • Geoffrey Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Oxana Smirnova
  • L Zwalinski

Summary, in English

The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb - 1 of s=13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p T ). The precision of the relative jet energy scale is 1–2% for 200GeV<pT<2TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same p T range. © 2019, CERN for the benefit of the ATLAS collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2019

Language

English

Publication/Series

European Physical Journal C

Volume

79

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044