The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Göran Jarlskog

Göran Jarlskog

Professor emeritus

Göran Jarlskog

Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector

Author

  • M Aaboud
  • Torsten Åkesson
  • Simona Bocchetta
  • Eric Corrigan
  • Caterina Doglioni
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Ulf Mjörnmark
  • R. Poettgen
  • Trine Poulsen
  • Oxana Smirnova
  • Oleksandr Viazlo
  • L. Zwalinski

Summary, in English

Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations. © 2018 CERN, for the ATLAS Collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2018

Language

English

Publication/Series

Physical Review Letters

Volume

121

Issue

9

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1079-7114