The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Göran Jarlskog

Göran Jarlskog

Professor emeritus

Göran Jarlskog

Properties of g→b¯b at small opening angles in pp collisions with the ATLAS detector at √s=13 TeV

Author

  • M Aaboud
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Eric Corrigan
  • Caterina Doglioni
  • Kristian Gregersen
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Oxana Smirnova
  • L Zwalinski

Summary, in English

The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to b-quark pairs is a unique probe into the properties of gluon fragmentation because identified b-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the g→bb process are measured using 33 fb-1 of s=13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-kt jet algorithm with radius parameter R=0.2, are used to probe angular scales below the R=0.4 jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into b-quarks. © 2019 CERN.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2019

Language

English

Publication/Series

Physical Review D

Volume

99

Issue

5

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2470-0010