The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Göran Jarlskog

Göran Jarlskog

Professor emeritus

Göran Jarlskog

ATLAS b-jet identification performance and efficiency measurement with tt¯ events in pp collisions at √s=13 TeV

Author

  • G. Aad
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Eric Edward Corrigan
  • Caterina Doglioni
  • Kristian Gregersen
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey André Adrien Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Eleni Skorda
  • Oxana Smirnova
  • L. Zwalinski

Summary, in English

The algorithms used by the ATLAS Collaboration during Run 2 of the Large Hadron Collider to identify jets containing b-hadrons are presented. The performance of the algorithms is evaluated in the simulation and the efficiency with which these algorithms identify jets containing b-hadrons is measured in collision data. The measurement uses a likelihood-based method in a sample highly enriched in tt¯ events. The topology of the t→ Wb decays is exploited to simultaneously measure both the jet flavour composition of the sample and the efficiency in a transverse momentum range from 20 to 600 GeV. The efficiency measurement is subsequently compared with that predicted by the simulation. The data used in this measurement, corresponding to a total integrated luminosity of 80.5 fb - 1, were collected in proton–proton collisions during the years 2015–2017 at a centre-of-mass energy s= 13 TeV. By simultaneously extracting both the efficiency and jet flavour composition, this measurement significantly improves the precision compared to previous results, with uncertainties ranging from 1 to 8% depending on the jet transverse momentum.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2019-11-25

Language

English

Publication/Series

European Physical Journal C

Volume

79

Issue

11

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044