The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Göran Jarlskog

Göran Jarlskog

Professor emeritus

Göran Jarlskog

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb −1 of 13 TeV pp collisions with the ATLAS detector

Author

  • G. Aad
  • T.P.A. Åkesson
  • E.E. Corrigan
  • C. Doglioni
  • P.A. Ekman
  • J. Geisen
  • V. Hedberg
  • G. Jarlskog
  • B. Konya
  • E. Lytken
  • K.H. Mankinen
  • C. Marcon
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb −1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV. [Figure not available: see fulltext.] © 2023, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2023

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2023

Issue

7

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Beyond Standard Model
  • Hadron-Hadron Scattering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479