The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

David Silvermyr

David Silvermyr

Senior lecturer

David Silvermyr

Underlying event properties in pp collisions at √s = 13 TeV

Author

  • S Acharya
  • Jonatan Adolfsson
  • Peter Christiansen
  • Oliver Matonoha
  • Adrian Nassirpour
  • Alice Ohlson
  • Anders Oskarsson
  • Tuva Richert
  • Omar Vazquez Rueda
  • David Silvermyr
  • Evert Stenlund
  • N Zurlo

Summary, in English

This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity (|η| < 0.8) in pp collisions at s = 13 TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum (pTleading) in the event. Charged-particle number-densities and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of pTleading with three different pT thresholds for the associated particles, pTtrack > 0.15, 0.5, and 1.0 GeV/c. The charged-particle density in the Transverse region rises steeply for low values of pTleading and reaches a plateau. The results confirm the trend that the charged-particle density in the Transverse region shows a stronger increase with s than the inclusive charged-particle density at midrapidity. The UE activity is increased by approximately 20% when going from 7 TeV to 13 TeV pp collisions. The plateau in the Transverse region (5 <pTleading< 40 GeV/c) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, RT) and the mean transverse momentum as a function of RT. Experimental results are compared to model calculations using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions. [Figure not available: see fulltext.] © 2020, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2020-04

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2020

Issue

4

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Hadron-Hadron scattering (experiments)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479