The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

David Silvermyr

David Silvermyr

Senior lecturer

David Silvermyr

Scaling properties of fractional momentum loss of high- pT hadrons in nucleus-nucleus collisions at sNN from 62.4 GeV to 2.76 TeV

Author

  • A. Adare
  • Peter Christiansen
  • Hans-Åke Gustafsson
  • Eva Haslum
  • Anders Oskarsson
  • Sarah Rosendahl
  • David Silvermyr
  • Evert Stenlund
  • L. Zou

Summary, in English

Measurements of the fractional momentum loss (Sloss≡δpT/pT) of high-transverse-momentum-identified hadrons in heavy-ion collisions are presented. Using π0 in Au+Au and Cu+Cu collisions at sNN=62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb+Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of Sloss as a function of a number of variables: the number of participants, Npart, the number of quark participants, Nqp, the charged-particle density, dNch/dη, and the Bjorken energy density times the equilibration time, Bjτ0. We find that the pT, where Sloss has its maximum, varies both with centrality and collision energy. Above the maximum, Sloss tends to follow a power-law function with all four scaling variables. The data at sNN=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of Sloss with dNch/dη and Bjτ0, lending insight into the physics of parton energy loss.

Department/s

  • eSSENCE: The e-Science Collaboration
  • Particle and nuclear physics

Publishing year

2016

Language

English

Publication/Series

Physical Review C

Volume

93

Issue

2

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9985