The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Claes Fahlander

Professor emeritus

Default user image.

Octupole states in Tl 207 studied through β decay

Author

  • T.A. Berry
  • C. Fahlander
  • F.P. Wearing
  • H. De Witte

Summary, in English

The β decay of Hg207 into the single-proton-hole nucleus Tl207 has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs1/2-1, πd3/2-1, and πh11/2-1 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model calculations and previous observations made in this region, and systematic underestimation of the energy of the octupole vibrational states is noted. We suggest that in order to resolve the difference in predicted energies for collective and noncollective t=1 states (t is the number of nucleons breaking the Pb208 core), the effect of t=2 mixing may be reduced for octupole-coupled states. The inclusion of mixing with t=0,2,3 excitations is necessary to replicate all t=1 state energies accurately. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Department/s

  • Nuclear physics

Publishing year

2020

Language

English

Publication/Series

Physical Review C

Volume

101

Issue

5

Document type

Journal article

Publisher

American Physical Society

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9985