The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Catarina Doglioni

Caterina Doglioni

Affiliated

Catarina Doglioni

Test of the universality of τ and μ lepton couplings in W-boson decays with the ATLAS detector

Author

  • G Aad
  • Torsten Åkesson
  • Simona Bocchetta
  • Eric Edward Corrigan
  • Caterina Doglioni
  • Jannik Geisen
  • Kristian Gregersen
  • Eva Brottmann Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey André Adrien Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Eleni Skorda
  • Oxana Smirnova
  • L Zwalinski

Summary, in English

The standard model of particle physics encapsulates our best current understanding of physics at the smallest scales. A fundamental axiom of this theory is the universality of the couplings of the different generations of leptons to the electroweak gauge bosons. The measurement of the ratio of the decay rate of W bosons to τ leptons and muons, R(τ/μ), constitutes an important test of this axiom. Using 139 fb−1 of proton–proton collisions recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV, we report a measurement of this quantity from di-leptonic tt¯ events where the top quarks decay into a W boson and a bottom quark. We can distinguish muons originating from W bosons and those originating from an intermediate τ lepton through the muon transverse impact parameter and differences in the muon transverse momentum spectra. The measured value of R(τ/μ) is 0.992 ± 0.013 [± 0.007(stat) ± 0.011(syst)] and is in agreement with the hypothesis of universal lepton couplings as postulated in the standard model. This is the only such measurement from the Large Hadron Collider, so far, and obtains twice the precision of previous measurements.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Pages

813-818

Publication/Series

Nature Physics

Volume

17

Issue

7

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1745-2473