The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Catarina Doglioni

Caterina Doglioni

Affiliated

Catarina Doglioni

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

Author

  • M Aaboud
  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • B Abeloos
  • Torsten Åkesson
  • Simona Bocchetta
  • LENE BRYNGEMARK
  • Caterina Doglioni
  • Vincent Hedberg
  • Göran Jarlskog
  • Charles Kalderon
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

Light-by-light scattering (γγ → γγ) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 μ1 of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (γγ) → Pb(∗) + Pb(∗)γγ,for photon transverse energy ET > 3GeV, photon absolute pseudorapidity |η| <2.4, diphoton invariant mass greater than 6GeV, diphoton transverse momentum lower than 2GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ±17 (syst.) nb, which is in agreement with the standard model predictions. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2017

Language

English

Pages

852-858

Publication/Series

Nature Physics

Volume

13

Issue

9

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1745-2473