The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Alice Ohlson

Alice Ohlson

Senior lecturer

Alice Ohlson

Anisotropic flow of identified hadrons in Xe-Xe collisions at √sNN = 5.44 TeV

Author

  • S Acharya
  • Sumit Basu
  • Peter Christiansen
  • Oliver Matonoha
  • Adrian Nassirpour
  • Alice Ohlson
  • Anders Oskarsson
  • Tuva Richert
  • Omar Vazquez Rueda
  • David Silvermyr
  • N Zurlo

Summary, in English

Measurements of elliptic (v2) and triangular (v3) flow coefficients of π±, K±, p+p ¯ , KS0, and Λ+Λ ¯ obtained with the scalar product method in Xe-Xe collisions at sNN = 5.44 TeV are presented. The results are obtained in the rapidity range |y| < 0.5 and reported as a function of transverse momentum, pT, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for pT< 3 GeV/c, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3 < pT< 8 GeV/c). The magnitude of the baryon v2 is larger than that of mesons up to pT = 6 GeV/c. The centrality dependence of the shape evolution of the pT-differential v2 is studied for the various hadron species. The v2 coefficients of π±, K±, and p+p ¯ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for pT< 1 GeV/c. A comparison with vn measurements in the corresponding centrality intervals in Pb-Pb collisions at sNN = 5.02 TeV yields an enhanced v2 in central collisions and diminished value in semicentral collisions. [Figure not available: see fulltext.] © 2021, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2021

Issue

10

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Heavy Ion Experiments

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479