The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Alexander Ekman

Doctoral student

Default user image.

Charged-hadron production in pp, p+Pb, Pb+Pb, and Xe+Xe collisions at √sNN = 5 TeV with the ATLAS detector at the LHC

Author

  • G. Aad
  • T.P.A. Åkesson
  • C. Doglioni
  • P.A. Ekman
  • V. Hedberg
  • H. Herde
  • B. Konya
  • E. Lytken
  • R. Poettgen
  • N.D. Simpson
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

This paper presents measurements of charged-hadron spectra obtained in pp, p+Pb, and Pb+Pb collisions at s or sNN = 5.02 TeV, and in Xe+Xe collisions at sNN = 5.44 TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb −1, 28 nb −1, 0.50 nb −1, and 3 μb −1, respectively. The nuclear modification factors RpPb and R AA are obtained by comparing the spectra in heavy-ion and pp collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor RpPb shows a moderate enhancement above unity with a maximum at p T ≈ 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct p T-dependence with a local maximum at p T ≈ 2 GeV and a local minimum at p T ≈ 7 GeV. This dependence is more distinguishable in more central collisions. No significant |η|-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe R AA better in central collisions and in the p T range from about 10 to 100 GeV. [Figure not available: see fulltext.] © 2023, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2023

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2023

Issue

7

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Heavy Ion Experiments

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479