The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Vincent Hedberg

Vincent Hedberg

Senior lecturer

Vincent Hedberg

Measurements of inclusive and differential cross-sections of combined tt¯ γ and tWγ production in the eμ channel at 13 TeV with the ATLAS detector

Author

  • G Aad
  • Simona Bocchetta
  • Eric Edward Corrigan
  • Caterina Doglioni
  • Jannik Geisen
  • Kristian Gregersen
  • E Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey André Adrien Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Eleni Skorda
  • Oxana Smirnova
  • L. Zwalinski

Summary, in English

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 139 fb−1. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is b-tagged, are selected. The fiducial cross-section is measured to be 39.6−2.3+2.7 fb. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model. [Figure not available: see fulltext.] © 2020, The Author(s).

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2020

Language

English

Publication/Series

Journal of High Energy Physics

Volume

2020

Issue

9

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Keywords

  • Hadron-Hadron scattering (experiments)
  • Top physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-8479