The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Vincent Hedberg

Vincent Hedberg

Senior lecturer

Vincent Hedberg

Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in sNN=5.02 TeV p + Pb collisions measured by the ATLAS experiment

Author

  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • B Abeloos
  • R Aben
  • Torsten Åkesson
  • Simona Bocchetta
  • LENE BRYNGEMARK
  • Caterina Doglioni
  • Anders Floderus
  • Vincent Hedberg
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of sNN=5.02TeV. Charged particles are reconstructed over pseudorapidity |η|<2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb−1. The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in −4.9<η<−3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus. © 2016 The Author(s)

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Pages

313-336

Publication/Series

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

Volume

763

Document type

Journal article

Publisher

Elsevier

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0370-2693