The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Vincent Hedberg

Vincent Hedberg

Senior lecturer

Vincent Hedberg

Search for charged-lepton-flavour violation in Z-boson decays with the ATLAS detector

Author

  • G. Aad
  • T.P.A. Åkesson
  • S.S. Bocchetta
  • E.E. Corrigan
  • C. Doglioni
  • J. Geisen
  • K. Gregersen
  • E. Hansen
  • V. Hedberg
  • G. Jarlskog
  • E. Kellermann
  • B. Konya
  • E. Lytken
  • K.H. Mankinen
  • C. Marcon
  • J.U. Mjörnmark
  • G.A. Mullier
  • R. Poettgen
  • T. Poulsen
  • E. Skorda
  • O. Smirnova
  • L. Zwalinski

Summary, in English

Leptons with essentially the same properties apart from their mass are grouped into three families (or flavours). The number of leptons of each flavour is conserved in interactions, but this is not imposed by fundamental principles. Since the formulation of the standard model of particle physics, the observation of flavour oscillations among neutrinos has shown that lepton flavour is not conserved in neutrino weak interactions. So far, there has been no experimental evidence that this also occurs in interactions between charged leptons. Such an observation would be a sign of undiscovered particles or a yet unknown type of interaction. Here the ATLAS experiment at the Large Hadron Collider at CERN reports a constraint on lepton-flavour-violating effects in weak interactions, searching for Z-boson decays into a τ lepton and another lepton of different flavour with opposite electric charge. The branching fractions for these decays are measured to be less than 8.1 × 10−6 (eτ) and 9.5 × 10−6 (μτ) at the 95% confidence level using 139 fb−1 of proton–proton collision data at a centre-of-mass energy of s=13TeV and 20.3 fb−1 at s=8TeV. These results supersede the limits from the Large Electron–Positron Collider experiments conducted more than two decades ago. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Pages

819-825

Publication/Series

Nature Physics

Volume

17

Issue

7

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Subatomic Physics

Keywords

  • Branching fractions
  • Centre-of-mass energies
  • Experimental evidence
  • Fundamental principles
  • Large Hadron Collider
  • Proton collisions
  • The standard model
  • Weak interactions
  • Bosons

Status

Published

ISBN/ISSN/Other

  • ISSN: 1745-2473