The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Torsten ÅKESSON

Torsten Åkesson

Professor

Torsten ÅKESSON

Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at √s = 8 TeV

Author

  • G Aad
  • B. Abbott
  • J Abdallah
  • O Abdinov
  • R Aben
  • M Abolins
  • Torsten Åkesson
  • Simona Bocchetta
  • Lene Bryngemark
  • Caterina Doglioni
  • Anders Floderus
  • Anthony Hawkins
  • Vincent Hedberg
  • Jenny Ivarsson
  • Göran Jarlskog
  • Else Lytken
  • Ulf Mjörnmark
  • Oxana Smirnova
  • Oleksandr Viazlo

Summary, in English

This paper reports a detailed study of techniques for identifying boosted, hadronically decaying W bosons using 20.3 fb (Formula presented.) of proton–proton collision data collected by the ATLAS detector at the LHC at a centre-of-mass energy (Formula presented.). A range of techniques for optimising the signal jet mass resolution are combined with various jet substructure variables. The results of these studies in Monte Carlo simulations show that a simple pairwise combination of groomed jet mass and one substructure variable can provide a 50 % efficiency for identifying W bosons with transverse momenta larger than 200 GeV while maintaining multijet background efficiencies of 2–4 % for jets with the same transverse momentum. These signal and background efficiencies are confirmed in data for a selection of tagging techniques. © 2016, CERN for the benefit of the ATLAS collaboration.

Department/s

  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2016

Language

English

Publication/Series

European Physical Journal C

Volume

76

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044