The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of RP

Ruth Pöttgen

Senior Lecturer

Portrait of RP

Jet energy scale and resolution measured in proton–proton collisions at √s=13 TeV with the ATLAS detector


  • G Aad
  • Torsten Åkesson
  • Simona Bocchetta
  • Eric Edward Corrigan
  • Caterina Doglioni
  • Jannik Geisen
  • Kristian Gregersen
  • E. Hansen
  • Vincent Hedberg
  • Göran Jarlskog
  • Edgar Kellermann
  • Balazs Konya
  • Else Lytken
  • Katja Mankinen
  • Caterina Marcon
  • Ulf Mjörnmark
  • Geoffrey André Adrien Mullier
  • Ruth Pöttgen
  • Trine Poulsen
  • Eleni Skorda
  • Oxana Smirnova
  • L Zwalinski

Summary, in English

Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36–81 fb−1 of proton–proton collision data with a centre-of-mass energy of s√=13 TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti-kt jet algorithm with radius parameter R=0.4 is the primary jet definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets (|η|<1.2) vary from 1% for a wide range of high-pT jets (250<pT<2000 GeV), to 5% at very low pT (20 GeV) and 3.5% at very high pT (>2.5 TeV). The relative jet energy resolution is measured and ranges from (24±1.5)% at 20 GeV to (6±0.5)% at 300 GeV.


  • Particle and nuclear physics
  • eSSENCE: The e-Science Collaboration

Publishing year





European Physical Journal C





Document type

Journal article




  • Subatomic Physics




  • ISSN: 1434-6044