Ruth Pöttgen
Senior Lecturer
Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents
Author
Summary, in English
Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010–2012) and Run 2 (2015–2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.
Department/s
- Particle and nuclear physics
- eSSENCE: The e-Science Collaboration
Publishing year
2021
Language
English
Publication/Series
Journal of Instrumentation
Volume
16
Issue
8
Document type
Journal article
Publisher
IOP Publishing
Topic
- Subatomic Physics
Status
Published
ISBN/ISSN/Other
- ISSN: 1748-0221